Description I/0 routines 1045, version 2.@1 1986

Table aof contents Fage:
Table aof cantentS.csccesnnsscanassssasunuunsssnnsnsansanannasl
T OO L0 e v 6 56 % womw o @ o v o 0w e o e R N e N e e e W e e
1s I/0 deViCeSivenasansssasassnanasaaansssanssacnsannanssns
2. Function keys with their functionsS...vescsescaansannanssd
72 Y -
PalB2 0 dow s w5 wE s e s B R e R e W K AR R RN S R S R NN NN
b 7 S T TR
3. The statuslinE@c.isuasssasvinannnsnaansasnnassnnsunnnnnsd
4., INEEr DTS ¢ s s s e wwm s ad s 8 e ms eae @ @asssnssnmeswmessnywwwn?
s 8 ThHe jumptable..ccceusssenonnssanassnssnnsnnnnannssannsalil
G. I/0 routineS.eveusesssnnsuaunasncannnannnannussanssnuseld
6.01 The screen output routin@.sssscesssensnsassnssnssansanld
46.02 The Viacom routingeS. « vus s s sasn s asams smnssmessmsnnels

6£.03 RS232 interfaCBesceansusransacssnannnsnensnannnsanas o wmw e 18
T L - 1 i = S R R L LR L L T &y

1065 was developed by: E.J.M. Visschedijk
Drakensteyn 299
7608 TR Almelo
The Netherlands

This manual has been written by: E.J.M. Visschedijk

To both program and manual apply:

Copyright () 1986 Kim gebruikersclub Nederland.

Translated by: H.A.J.0Oort
van Eijsingalaan 28
2527 VL Utrecht
The Netherlands

Copyright (c) 6502 Kenners 19286 1065 1/0 routines manual page 1

Introduction

The 1045 part is located in the eprom. This is an 2764 which however
is used only half. This is done because, firstly, the DOS&S users of the
first hour have an 2744 monitor eprom that they can have reprogrammed.
Secondly, an 27&4 is cheaper as an 273Z2. Finaly because prabable the
other half will be used as well in future.

1065 is used for the elementery routines like in and output routines,
10 device control, device initialization, status line routines and the
interrupt dispatch.

Compared to version 1.@01 many things have been changed.

Madifications with regard to DOS 1.@1 and MON 1.@1/2:

If the system is switched on, 1065 will report. The same will occur
after a RESET. Then DOS&S is meant to be started by starting the
boatstrap. This is done by depressing the key B (b). That is the only
key, apart from the function keys, that will be accepted at this point.
The bootstrap is started and DOS&5 will report in the DOS command mode.
At that point we possible can get MON&S from disk to work with the
monitar that version 1.01 automaticly started with.

In 1065 also an automatic ‘screen off’ is included. If during an
adjustable time no key was depressed, automaticly the screen will be
cwitched off. This to prevent the burning in of the picture tube.

The start and end addresses for in— and output device 5 have to be set
by hand naw. This can be done via MON&S or via the DOS command MEMFILL.
Befare the in- or output device 5 is initialized first the variables
WRBEG, WREND and/or REBEG, REEND have to be filled.

Some usefull I0 entries have been added. (check for this the
jumptable, chapter 35). Other entries which are included in DOS have been
left out, like: PRBYT, CRLF etc.. It is possible now by way of the
jumptable to initialize and call a device independent of the devices
active at that moment.

Copyright (c) 6502 Kenners 1986 1065 1/0 routines manual page 2

i Input and output devices

Every computer system needs input of some kind. The input is digested
by the system with a specific program. The result af the input and this
program have to be made visible on some peripheral that takes care of the
output. From now on we’ll call everything that can be used for input,
input devices and everything that can be used for output, auput devices.
Accordingly a keyboard is called an input device and a picture screen or
printer an output device. Every system knows one or more 1/0 devices that
have to be supported by software. I065 takes in principle 8 input and 8
gutput devices inte account. To keep track of the device active at
present, a byte is reserved for the input as is for the output. Each bit
in this byte represents a device. Is a bit 1 then the related device is
active. Always one device should be active, for input as for output.

Using the function keys the I/0 devices can be selected. If all input
and/or output devices were switched off then, because this should not
occur, automaticly the default I/0 devices will be switched on. The
variable in which the output device bits are located is DEVMODOUT and the
variable in which the input device bits are located is DEVMODINP. The
defauld output device bits are located in the variable OUTRET and the
default input device bits are located in the variable INPRET. The
variables INPRET and OUTRET are so chosen that on default the keyboard
and the screen are switched on. OUTRET and INPRET can not be changed with
the functionkeys. Following below is an enumeration of the 1/0 device
numbers with the peripheral they control:

OUTPUT DEVICE DEVICE INFUT DEVICE DEVICE

NUMBER DESCRIBTION NUMBER DESCRIBTION
1 Screen 1 Keyboard
2 printer, centranics 2 Not used
3 RS232 output 3 RS232 input
4 VIACOM output 4 VIACOM input
5 Memary output S Memory input
& Free (DVB&VEC) =) Free (DV1&VEC)
7 Free (DV@7VEL) 7 Free (DV17VEC)
8 Free (DV@8BVECD) 8 Free (DV1IBVEC)

The output device # 1 is the screen which will be usually on. In I06S
are all routines needed to control the screen available. The asumption is
made that for video-display—-hardware the Elector’s VDU is used with an 146
MHz crystal. A different character generator is being used, this to get
inversed video.

Output device # 2 is used to control a printer. The printer needs to
have a centronics parallel interface. If this device is switched on while
there is no printer connected, after a few seconds this device will be
switched off again to prevent there is being waited for a handshake
signal from a printer that is not connected.

Output device # % is a serial connection via the 6551 ACIA that is
present on the CPU print. The default value for this ACIA is 248@ baud.
After selection of in— or output device # 3 the variables ACCTL and ACCMD
are loaded into the control and command registers of the ACIA. By
changing these variables another baudrate may be chosen. The default
value for ACCTL is $BA and for ACCMD $05. With the program RS232 it is
possible to adjust these values very quickly and to write these values in
a file which is automaticly being loaded when starting the system. This
way the always the correct values are written into the variables ACCTL
and ACCMD when the system is started.

Copyright (c) 6302 Kenners 1986 10465 1/0 routines manual page 3

Output device # 4 is the so called VIACOM cutput. I0&5 is equiped with
a special communications program. This communication is accomplished with
8 data-lines and 2 handshake-lines from a VIA. Using this, 2 computers
which both have VIACOM can communicate with one another. If during saome
seconds no handshake signal is received by the VIA, automaticly this
device is switched off and the default output device is switched aon.

Dutput device # 5 is the memory. 1065 is able to use the memary like
an output device. This way, output that would normally be put on screen
now can be put in memory as well. If this device is being switched on
first some memary-pointers are caopyed to define the area in which the
information has to be stored. Is this area used up automaticly output
device # § is switched off.

Output devices # 6, 7 and 8 are not used. Output routines written by
vaurself can be called on via these device numbers. To each output device
belongs a vectaor which has to point to the ocutput routine. The names of
these vectors may be found in the table.

Input device # 1 is the keyboard. This is also the default input
device. If all input devices are switched off this input device is
automaticly switched on again to prevent loss of control over the system.

Input device # 2 is not used. Actually he stands beside the centronics
output. To make this an centronics input is not very usefull as the
VIACOM input also can be seen as a centronics input.

Input device # 3 is the RS232 input. This input uses the same ACIA as
the RS232 output uses. The default value for this device also is 2400
baud. To change the baudrate and the number of stopbits and such, the
variables ACCTL and ACCMD have to be adjusted. After a system reset these
variables have again their default value and need readjusting.

Input device # 4 is the VIACOM input. The intention with VIACOM is
stated above already. The use of VIACOM is explaned in chapter 4. If
after a few seconds no handshake signal is received by the VIA, then
automaticly this device is switched off and the default device is
switched on.

Input device # 5 is the memary, used as input device this time. Read
is from memory while the system ‘thinks’ the input is from the keyboard.

Input devices # 6, 7 and 8 are, as with the output devices 6, 7 and 8
free to be defined by the user.

Copyright (c) 6502 Kenners 1986 I06S I/0 routines manual page 4

2. Function keys with their functions

It is possible, even if you have a keyboard without function keys, to
use function keys. The use af those keys namely is a sequence of common
ascii values and not the use of keys with some strange code. To get with
a function key first the value $1E has to be sent. On most keyboards this
is the controlkey together with a circumflex (™). After this #1E a normal
key is depressed. If one should be unable to get #$1E from his keyboard,
then the variable MONESC has to be changed. The default value is $1E.
Because the control-value of ~ in our system of notation ~* is, are the
function keys in this manual preceded by ~"*.

The function keys which always may be used if the keyboard is an
active input device, are:

~~1 - show and change active input devices
~~@ - show and change active output devices
~*~S - on/off switch of the statusline

Be sure to use capitals for the ‘common’—keys of the functionkeys. If
no capitals are used there will be no function key recognized.

N\ L e %
60-¢ G ALS DIE
/

CG,(G (Pt MméC

Copyright (c) 4582 Kenners 1984 1065 1/0 routines manual page 9

2.81 Function ~~1

This function key is used to see which input devices are active and to
switch an input device on aor off. After I is typed a different
statusline will be shown. On this statusline is written that we are
looking at the input devices. A number from 1 to 8 may now be typed. On
the statusline we will see a possible ‘on’ behind a number change into
‘off ‘. The device corresponding with the typed number has been switch off
then. Switching off all input devices is madness. The software therefaore
will in such case switch on the default device again. If two input
devices are switched on simultaneously, then only the one most to the
left will be active. This in contradiction to the output devices of which
more then one may be switched on at the same time. Input device # 2 is,
as stated before, not used.

After one has chosen for input device # 4 and switched off input
device # 1 the input has to come from the VIA-port according to the
VIACOM protocel. However, is no device connected then, after about 10
seconds, device # 4 will be switched aoff again; input device # 1 is
automaticly switched on then. One should take into account that if
another input device is switched on, often there is still being waited
for an character from the previous input device. If this device for
example was the keyboard still a dummy key has to be depressed. The
contents of this dummy key however, will be sent to the active output
device.

The input devices 6, 7 and B are free to be defined by the user. The
carresponding vectars have to point to the input routines, to make them
work. In case of a default these vectors point to a routine that will
switch on the default input device again and switch off the device that
was switched on just now.

2.82 Function ~~0

This function key is used to check which ocutput devices are active and
to switch on or off output devices. This function operates analogous to
the ~~I function key. It is however possible to switch on several output
devices simultaneously. -

2.83 Function ~"S5

This function key is used to switch off the statusline that appears in
the bottom of the screen. By using the same function key again the
statusline will be switched on again. If the statusline is switched of it
is not passible to have a 25th line on the screen all the same.

Copyright (c) 6582 Kenners 1986 1065 I/0 routines manual page &

The statusline

There is 2 Kbyte ram located on the VDU-print. This enables us to
store 25 lines of 8@ characters each. As 24 lines of 8@ characters form a
standard screen it was decided to use the remaining space for putting a
statusline an the screen. The statusline is optional, which means it can
be switched on and off. It is not possible to chaose another screen
format, like 25 # 8@ characters and no statusline. The statusline can be
switched off with ~~S. Narmally the statusline is in inverse video. This
can be changed, by changing the variable INVST (default on $8@) into #0@.
After this variable has been changed the command CLEAR should be given
while in DOS command mode, aotherwise some characters will remain in
reverse. Those are the characters that are not changed every second or
after each time a key is depressed.

There are 3 kinds of statuslines. The most important one is the
statusline which appears after switching on or resetting the system. From
left to right to following is shown on the statusline.

Time hh:mmiss — This is the time in hours, minutes and seconds.
Using the DOS command TIME this can be changed.

Date dd-mm-yy — The date is shown in day, manth and year. The date
can be changed using the DOS command TIME or, in
case you are using a real time clock, with the
command SETRTC.

Only at @@:20:22 the date is changed by I0&S.

If the memory addresses caorresponding to the date
are changed by a praogram written by yourself then
this will not be immediately visible on the screen
One has to change the flag DATUPD to #FF; then the
date will be adjusted at the moment the monitor
jumps to the keyboard input routine.

Col: ®x ~ This states the column—-position of the cursor. Or
put differently, the horizontal position of the
cursor. The value is 1 if the cursor is in its
leftmost position., His maximum value is 80.

Row: vy - This is the cursor position in vertical direction.
The top-line is line 1, the bottom-line is line 24

The next information will only be on the statusline if the screen
editor ED is active. After leaving ED again, this part of the statusline
will erased.

Ln: =z — During an edit session always the cursar position
is shaown on the statusline in Cal and Raw. However
this is the position on the screen, it is unknown
which line of the file it is. If an edit-file
exists of 200 lines and the cursor is on the
bottomline, then z will be 20@.

Fn: filename - If one opens a file for editting, here the file-
name will be shown. If again a file is opened the
name will be changed.

Copyright (c) 64582 Kenners 1986 1065 1/0 routines manual page 7

There do exist 2 more statuslines. If the function ™0 aor ~"I is
chosen to change in—- or output devices, on the statusline appears
information on the present situation. Shown is which devices are active.

Alsa it is possible to define a statusline yaurself. Far this purpose
special entries are made in the jumptable. This way it is possible to:

~ delete the complete statusline

- put a string, defined by yourself, on the statusline
— call back the old statusline

Copyright (c) 6302 Kenners 1986 1065 I/0 routines manual page 8B

4. Interrupts

RESET

NMI

IR

Copyright

~ If the RESET key is depressed all variables will be changed

back to their default values. The clock will keep on going
and mostly will not require readjusting. (depents on the
reasan for the RESET). The keyboard and screen are
initialized again thus always recavering control over the
system. Again a B has to be typed to start the bootstrap.

After a NMI, via a NMI VECTOR, a jump is made to a dummy
RTI. For various purposes the vector can be changed by
yourself,

Via the vector IRGVECTOR a jump is made to the IRQ routine.
In which routine it is checked what caused the interrupt.
Then from a table the address of the routine required is
fetched. In this table are the absolute addresses minus 1.
This because via the stack is jumped to these addresses.
This table contains 16 vectors. Both VIA’s may cause 7
interrupts. Further a interrupt may be caused by the ACIA
and also a software interrupt is possible. The software
interrupt vector points to a dummy RTS. In the program
MON&S this vectar is diverted to be able to generate a
software break.

The addresses of the 1& vectors are described in chapter 7
with the variables.

Is however no cause for the interrupt found, then via the
UNRINT vector will be jumpted to a routine that will put
‘IRR ignored’ on the screen. The cause of the interrupt
however is not removed, thus causing this information to
keep on coming. The system only can be saved mastly by
depressing the RESET key. The UNRINT vector points directly
to an absolute address. Did one connect an extra peripheral
which may cause an interrupt, then will be jumpted to the
UNRINT vector. While 1n1t1a11zing this peripheral (the

real time clock for example) the UNRINT vector has to be
diverted and has to point to a routine that will check if
the interrupt was caused by this device and if not, there’s
vet to be jumped to °‘IRE ignored’. If the par1phera1 did
cause the interrupt then may be contlnuad with the
interrupt routine for this device.

(c) 65@2 Kenners 1986 1065 1/0 routines manual page 2

The interrupt routines that are pointed at by the table are to be
concluded with an RTS thus allowing the main interrupt routine in I0&3 ta
get back the values put on stack and then_ to continue with the main
pragram. Below the IR@ table is printed. The addresses of the vectors may
be found in chapter 7.

INTVL - Ti VIA 1 used by system clock
INTVZ - T2 VIA 1

INTVZ - CB1 VIA 1

INTV4 -~ CB2 VIA 1

INTVS - SR via 1

INTV6G - CAl VIA 1 used by keyboard
INTV7Z - CA2 VIA 1

INTVE - Ti via 2

INTV? - T2 VIA 2

INTVi® - CB1 VIA 2

INTV1L - CBZ VIA 2

INTVI2 - SR via 2

INTVI3Z - CA1 VIA Z

INTV14 - CAZ VIA Z

INTV1IS - ACIA used by IO device # 3
INTV16 — Software interrupt.

Copyright (c) 6502 Kenners 1986 1065 1/0 routines manual page 10

The jumptable

The jumptable has been made to have fixed entries for the important
routines which are called on from the DOS or other programs. Following
below is a list and describtion of these routines.

$FQQ2 -

$FOQ3 -

$FOR6 -

$Fae? -

$F@ec -

General output routine. Put a character in the accumulator and
call on this routine. All active output devices will receive
this Eharacter for output. The registers A, X and Y remain
intact.

General input routine. If a jump is made to this routine the
routine will return with the input value from the active input
device in accu. If more then one input device is switched on,
only the most significant one is used. The X and Y registers
remain intact.

Also this is an output routine. However here the output device
that is in the X register will be regarded as heing active. Has
the X register for example the value %02 then the character
will go to the printer.

The numbers that should be in the X register are similar to
thaose used for the output devices with the function key ~*0.
Valid are only numbers from 1 to 8. If however 9 is chosen then
something will be put on the statusline. In such case also the
Y register is of importance. In this register is the X position
on the statusline located. Would one want to write an "A’ on
the 25th position of the statusline, then in the accu should

be #£41, in the X register $@% and in the Y register #1%9. At the
end of this routine the registers are destrayed.

This is an input routine which uses the device that is pointed
to by the X register. The numbers 1 to 8 can be used and
correspand to those of funtionkey ~~I1. However if #@% is
located in the X register then a jump will be made to a key-
board input routine which checks if there’s still anything in
the input buffer. If not then will be jumped back with the accu
$0@, else with the key—value in accu. The X and Y register are
destroyed in this routine.

With this entry it is possible to initialize devices. The
number of the device is put in the X register. Ta make a
distinction between input and output devices the most signifi-
cant bit should be set in case of input devices. If one want to
initialize the printer from an application-program, then a jump
should be made to this routine with #@2 in the X register. The
carry indicates whether the initialization was succesfull ar
not. If no printer was connected or selected then will be
returned with the carry set. If one wants to initialize VIACOM
as an input device then should be jumped to this entry with #83
in the accumulatar.

Copyright (c) 6502 Kenners 198& 1065 I/0 routines manual page 11

$FQOarF
$Fa12

$F@15

$Fa1i8

$F@1B
$FO1E

$F221
¥F024

sFB27

This entry is used by the editar to initialize the right part
of the statusline. ‘Ln:’ and ‘Fn:’ is put on the statusline.
In the accu (high byte) and the Y register (law byte}) is the
value located which should be printed in decimal behind ’Ln:
on the statusline. This entry is used by the editor.

In the accu (high byte) and the Y register (low byte) is the
address of the string located that represents the filename
which has to be put behind ‘Fn:’ on the statusline. This entry
is used by the editor.

After calling this routine the right part of the statusline is
erased. Also this routine is used by the editor.

After calling this routine the complete statusline is erased.
An erased statusline shaws spaces in inverse video only.

In the accu (high byte) and the Y register (low byte) the
address of the string is located which is printed on the status
line. Using this one is able to define a statusline himself.
The string should be concluded with $8@ and should naot be
longer then B@ characters. After a ‘clear screen’ this routine
should be called again, because the 1045 clear screen routine
does not know were the user defined statusline is. Also one
perhaps Jjust should omit ‘clear screen’ in this case.

With this routine it is possible to call back the standard
statusline again.

After calling this routine the cursorposition is changed into
the position indicated by the X and Y register. The position

on the upper-left side of the screen is 1,1. X goes from #0801 to
$£5@ (is B@ in decimal). Y gaes from $81 to #$19 (is 25 in
decimal) .

If now the next routine is called the cursor will be put back
to its previous pasition.

If the routine at $F@24 was called then with this routine the
cursorposition from before can be restored. Haowever these
routines can not be called on repeatedly. So by calling $F@24
twice without calling $F@27 in between, the first return
position will be destroyed.

.

Copyright (c) 6582 Kenners 1986 1065 I/0 routines manual page 12

6. 1/0 routines

In this chapter we’'ll go further into certain I065 routines.
Described is haow these routines wark and also what they can be used
for.

46.01 The screen output routine

On default all output goes to the screen. Only if there are output
devices changed the ouput will go to other devices. However the screen
remains the most important ouput device. Because of this some very
special possibilitys were made far this device.

- Cursor control
- Invers video
- Grafics

It is possible to control the cursor by ‘direct cursor addressing’.
Which means that the cursor can be maved to any screen—positiaon by a
fixed sequence of characters. This can be done by using the jumptable-—
entries $FB24 and $F@27 but also in a way as is decribed below.

By first sending the character %14 (control T) to the screen the
routine is notified that the next two characters represent a cursor
position. The screen consists of 8@ columns and 24 lines. (The status-
line not counted here.). The position specified therefore should be
inside this 8@ * 24 field. Values are to be entered in hexadecimal, so
the field limits are: $81...%$5@ and $01...%18. (The routine itself uses
values from $@@, so 1 less, but the user will not notice this.).

After the character $£14 first the column co-ordinate and then the line
co-ordinate is to be stated. If one would wish to print an "#° on the
1@th line in the 40@th column, then the following sequence of characters
are to be sent to the screen autput routine: %14 $28 $0A $2A4.
Ofcoarse also it is possible to print several characters this way. Also
several cursor control commands can be used in a row. To print
something on the statusline the line co-ordinate should be #12. Then
care has to be taken not to have this character erased by the clock-
display. (for example). This can be prevented by making the variable
STATTOG $FF. The statusline then is no longer kept up to date. One
should first call on a routine which clears the statusline.

Copyright (c) 4502 Kenners 1986 1065 1/0 routines manual page 13

Also ther are other special (cursor contraol) characters or characters
which cause the erasure of the whaole screen or just a part of it. Those
characters are listed belaw.

$@7 - Bell. Produces a beeb if the necessary hardware is there.

$@8 — BRack space. Puts the cursor one pasition back. If the cursor
paosition was 1,1 then a scroll down follows.

$@9 — Horizontal tab. The cursor will be maoved to the next tab-
position. There is a tabposition every 8 positions. If the
cursar is past the last tab position of the current line
there will be scrolled up.

$0A — Line feed. The cursor moves one line daown. If the cursor was
on the last line then a scroll up will follow.

$@B - Vertical tab. The cursor is moved one line up. If the cursor
was on the topline a scroll down will follow.

£@C - Form feed. The screen is cleared. The statusline remains
unchanged. The cursor is maved to position 1,1.

$@D - Carriage return. The cursor is moved to the leftmost column
of the current line.

$14 - Cursor direct addressing. After this code 2 co—-ordinates are
expected. If aone of both co-ordinates are not inside the
available field the command is not executed. If the first
co-ordinate entered was wrong already then still the second
will be expected, but nothing will be done with it.

$19 — Clear to end of screen. This clears the screen from the
position to the end of the screen. The cursor position does
not change.

$14 - Clear to end of line. Clears from the cursorposition to the
end of the line. The cursor position is not changed.

$1B - Escape. Following this character the screen can be changed
into invers or grafics. Also with an escape sequence that
mode is restored.

$1C - Home. The cursor moves to position 1,1. The screen remains
unchanged.

Invers video is another possibility of the screen. With this parts of
text can be accentuated. This is amongst others done with the status
line. To put an character in invers video on the screen the most
significant bit of this character should be set or the character should
be preceded by an escape sequence. This sequence is <ESCAFE> and i ($£1B
$49). The characters following this sequence are all in inverse video.
After the escape sequence <ESCAFE>» and n ($1B $&4E) the characters will
be printed normal again.

It also is possible to get a limited number of grafic characters on
the screen. By first switching on invers video also those characters
can be displayed inversed. The escape sequence for grafics is <ESCAFE>
and £ ($£1B #44&). To switch off the grafics mode, use the sequence:
<ESCAFE>» and g ($1B #47).

Copyright (c) 6582 Kenners 1986 1065 1/0 routines manual page 195

7.02 The Viacom routines

The VIACOM I/0 routines are developed to be able to have two
systems, which both are provided with a protocol like this, communicate
with one another. Communications is accomplisched with 8 bits parallel,
using a VIA. Also 2 handshake lines are needed and a ‘ground’, sa, at
least a cable with 11 cores is needed to connect the 2 systems. VIACOM
is designed to sent programs, parts of memary, etc. from ocne system to
the other. The VIACOM routines are part of the I/0 devices. (Number 4).
If aoutput device 4 is switched on together with the screen then data
which is sent to the screen also is sent to the output VIACOM routine.
If no other computer is connected to the computer then seemingly the
system ‘hangs’. However after about 10 seconds this device will be
switched off automaticly. The same apply’s to input device # 4. This
device however cannot function simultaneously with the keyboard as the
input routine only selects the most significant input device which is
the keyboard. So the keyboard has to be switched off. Then one switches
on the VIACOM input and again it seems as if the system ‘hangs’ if na
other system is connected to the other side of the VIA. Both systems
should be connected as is shown in fig. 1. Using the CPU-print of
Elector that is the A side of IC 3. If the hardware is in order then
it should be possible to sent a program from DOS65S using the
discribtion below.

The procedure is as follows:
Sender:

1 - 'Type’ the file with the command TYPE in this way:
TYPE — N filename
2 — Before depressing <RETURN> behind the filename, first ouput-
device # 4 should be switched an. (~"4).
3 — Then depress <RETURN>. Sometimes another return is needed.

Receiver:

1 - '‘Create’ a file using the CREATE command in this manner:
CREATE filename
2 - An ‘%’ appears as prompt. Now switch off input device # 1
and switch an input device # 4. (~~1 1 4).
3 — Sometimes a return is needed.

ffter the file is sent over anaother 1@ seconds will pass before the
receiver regains control over his keyboard. Then still ~D and <RETURNZ>
have to be typed to close the CREATE caorrectly. In the file some
editting is needed to remove an ~J (linefeed) which turned up at the
beginning of the file, and also an ‘%’ at the end of the file.

The sender still has control over his keyboard and so, can switch off
device # 4 without praoblem. (~~0 4).

Copyright (c) 65@2 Kenners 19864 1065 I/0 routines manual page 146

The operation of Viacom is based on two VIA's which communicate with
one another using full auto handshake. Fig. 2 should make this a little
clearer. The sender is ready to transmit data and checks the CAl line
on becoming zerno, which means he can start sending. If this line is
zero the sender puts the data on the VIA-bus and alsa changes CAZ to
zero thus making the CAl line in the receiver zero. The data on the
sender VIA-bus now is valid. A CAl line becoming zero automaticly
changes the CAZ2 line into high again. At the receiver now CAl becomes
zero thus causing his CAZ and the CAl of the sender becoming high.
The receiver also checkes his CA1l line and as soon as this line
becomes zero the receiver reads the VIA data bus. After the data has
been read by the receiver he will change his CAZ line to law which
causes the CAl line at the sender becoming zera as well. If the
receiver was not yet ready digesting previous data then his CAl line
will have been low for some time already before new data could be read.
If the senders CAl becomes zero again the sender is allowed to put
something an the VIA-bus again. If the sender is still busy getting the
next data then the CAl line will become zero before he is able to sent.
Now data will be sent as soon as the sender is ready.

The above works perfectly once all got going. The routine is very
simple: check CAl, if low then write or read to or from the VIiA-bus.
If CAl is high then wait, but no more then 1@ seconds. However, the big
problem occurs when the sender has to sent the first character. At that
moment the receiver has not yet received anything and the sender’'s CAl
is still high. The result is that the first character will never be
sent. The solution however is rather simple. The output routine uses
a vector. When the output device is initialized, then the vector is set
so that the first character which has to be sent directly is put on the
VIA‘s data-bus, without checking CAl. After this character has been
sent the vector is changed so that before the next characters are sent
first CAl is checked.

Copyright (c) 64502 Kenners 1986 1065 1/0 routines manual page 17

Copyright (c) 6502 Kenners 1986

1065 170 routines manual Page 17

VIA 6522 VIA 6522
) PAQ PAD
addessbus < > <:>oddressbus
Y Ym
databus ; i KT >databus
PA7 PA7
controlbus<'_—__> CAl >(CAl C::>controlbus
CA2 CA2
COMPUTER 1 COMPUTER 2
FIG.1 '
write data
get next data /7
data valid /{
. data invalid U
SEND
CA2 \l
CA1l J_—'_ ’
read data ﬂ Lrl
save data //" l
RECEIVE il | /
CA1 (\l

FIG.2

&£.@83 RE23Z2 Interface

There is both an in- and output RS232 routine included in the
monitor. With the input routine device # 3 has to be switched on and
1 to be switched off. At the receiving of an ‘receiver register full’
interrupt the received character is put into the keyboard buffer. The
RSZ32 receiver routine reads those characters from the keyboard buffer.
The result of which is that, while receiving via R8232 alsa the
characters will be received which are keyed in on the keyboard.
The RS232 input routine does not use a handshake procedure.

The RS232 output routine can, for example, be used for controlling
a serial printer. From DOS the printer will not work with the PRINT
command, as this command uses the centronics output.
The RS232 output does work with a handshake procedure. Far if
characters are sent then this output can be blocked be sending an ~8
to the R8232 input. Following an ~G the output goes an. This saftware
handshake is used by many printers. Also many modem connections use
this protocol. Switching off this device will cause no prablems as the
keyboard still can be used.

Copyright (c) 4502 Kenners 1986& 1065 I/0 routines manual page 18

Variables

The intention of this chapter is to make the user of DOS65 and
10465 clear which variables are where and also for what purpose one
could use the variables oneself. Following below is a list of all
variables used in I1/065. First the variables absolute address is
listed followed by the name and an explanation. The name used is the
same as used in the source listing of 1065 which is available as well.

A great number of zero-page variables are used. Which means used
temporaryly. The variables located on the addresses fraom $FB to #FF are
used by the bootstrap routine. The variable PTA and PTE are used by
1065 itself, but after use the original cantents is restared. So these
addresses may be used for other purposes. Which means, in normal
programs. Errars will occur when these variables are used in interrupt
routines.

2022 - PTA Is used to copy the statusline in the scroll routine, with
scroll up and scroll down.
(2 bytes)

202 - PTB Also these variables are used in the scroll routines.
Zero—page addresses were chosen because of speed-—
considerations. (2 bytes)

The variables belaow are used by the bootstrap routine.

@@FBR — SECC TSL location.

POFC — RPOIN Pointer to system block (input buffer). (2 bytes)
@BOFE — ERCNT Number of read errors.

P@FF — ERC1 Density indicator.

Copyright (c) 4502 Kenners 1986 1065 1I/0 routines manual page 19

E700
E701

E702

E7@3

E704

E70@3

E7@6

E7@7
E7@8
E7@9
E702A
E7@B
E7@C
E7@D

E7QE
E7@F

E710
E711
E712
EZ71L3
E714
E715
E716

E717

E718

The variables following below are used in I0&3S.

- SAVSTACKF This is a software stack pointer for a routine which

- STATTOG
- CRPX
- CRPY

= CURFX

- CURPY

- CURP

- SCURPX
- SCURPY
- XTMP

- XPSOLD
- YPSOLD
- OUTCHR
- MAXSTL

- HSFLG
— DEVCHOIC

SDVOUT
SDVINF
OUTRET

| T T I A |

- INFPRET

CLSEC

saves the A, X and Y registers.
Variable which keeps track of which statusline is in
use. The mast significant bit indicates on ar off,

1 = on.
Variable in which the contents of CURPX is stored
before a jump is made to the routine which prints
Row and Col on the statusline.
Variable in which the contents of CURPY is stored
befare a jump is made ta the routine which prints
Row and Cal on the statusline.
The position of the cursor in X (harizontal) direction
The value of this variable is one less then Col
states. The value of this variable can be from #0280 to
a maximum aof #4F.
The position of the cursor in Y (vertical) direction.
The value of this variable is one less then Row states
The value of this variable can be from #2@ to a
maximum aof $17. Is something printed on the statusline
then its value will be #18.
Flag which indicates whether direct cursaor addressing
takes place. Also it shows wether the first entered
co—ordinate was inside its limits.
Temporary staore address for CURPX.
Temporary store address for CURPY.
Tempor-ary store address for the X direction pointer.
0ld X position for call on POSIT routine.
Old Y pasition for call on POSIT routine.
Save address for the character to be printed.
Maximum stringlenght in the routine which puts
characters on the statusline.
Flag which sees to the handshake procedure ~8 and ~@
in the RS232 routines.
If function ~0 is chosen, this variable will be
temporaryly $0@. With ~~I this variable will be #01.

DEVMODOUT The active output device bits are located here.
DEVMODINF The active input device bits are located here.
SDEVMODOUT Stare address for DEVMODOUT.

SDEVMODINF Store address for DEVMODINP.

Store address for DEVMODOUT in the output routine.
Store address for DEVMODINP in the input routine.
Default setting for DEVMODOUT. If VIACOM must wait for
a handshake to long, or if the memory output device

is no longer active, or if device # 6, 7 or 8 is
activated without this device being initialized, then
this value is put in DEVMODOUT and the original
situation is restored.

Default setting for DEVMODINP. The same story goes
here as with OUTRET, but now in relation to the input
devices and DEVMODINP.

Only during the input routine, while waiting for a
depressed key the clock is adjusted aon the screen.
This variable has the value of the seconds after the
clock has been set on time. Then it is checked if
CLSEC is still the same as the seconds counter. If so,
then will be waited some before the clock is adjusted
again.

Copyright (c) 6502 Kenners 1986 1065 1/0 raoutines manual page 20

E719
E71A
E71B

EZ1C

E71D
E71E
E71F

E721
EZ23

E724
E723
E727
E728
E729
E72B

E72C
E72D
E72F

E738
E731
E733

FUNENA
FNCEN
VIAVRA

GRFLG

PNTXLSAVE
PNTXHSAVE
PNTX

PNTXL
PNTXH
DMPRAM
DUMPL
DUMPH
LDALET
LETADRL
LETADRH
FRUWR

FRWRL
FRWRH
FRRE

FRREL
FRREH
MONESC

Flag which is set after ~" is depressed, so, when a
functionkey is expected.

If the value of this variable is not $88, the function
keys are switched off.

If there has been no handshake for 1@ seconds, a jump
will be made from VIACOM. VIAVRA keeps track of the
time passed.

Grafics flag. Contains $46 if the grafics are on. On
the screen grafic instead of ascii characters are
printed. This flag is set by sending the character
sequence <ESCAPE> and F to the screen output routine,
sa #1B and %46. The grafics mode is switched of by
sending <ESCAPE> and G to the screen routine, so #1B
and %$47. Then normal ascii characters will be printed
again. The variable GRFLG will contain %20 then.

Save address for PNTXL.

Save address for PNTXH.

Because the designer wished to use as little zeropage
addresses as possible some addressing possibilities
are naot available anymore. For example STA (ADR),Y.
To simulate this kind of addressing elsewhere in
memory self modifying programs are used. At address
PNTX an operationcode is stored. PNTXL and PNTXH naw
are the absolute addresses which can be changed. At
the first address after PNTXH is an RTS. The opcodes
which are put in FNTX depents on the use.

Low byte of the absolute address of the selfmodifying
program PNTX.

High byte of PNTX.

Selfmodifying program which is used to put characters
on the screen. This is the opcode address, it always
contains S§TA (£8D).

Low byte of the VDU ram address which will be used
when the next character goes to the screenroutine.
High byte of the above mentioned.

Selfmodifying program which can be used to output a
series of characters to the active output devices. Its
cantents is always LDA ($AD).

Low byte of the absolute address aof the character
which this routine gets.

High byte of the above mentioned.

Selfmodifying program which is used to put a character
somewhere in memory with cutput device # 5, the memory
as an output device.

Law byte of the absolute address of FRUWR.

High byte of the absolute address of FRUR.

Self modifying program which is used to read a
character from somewhere in memory with input device
5, the memory as an input device.

lLow byte of the absolute address of FRRE.

High byte of the absolute address of FRRE.

In here is default #$1E. Or the character after which
the monitor the next character assumes to be a
functionkey.

Copyright (c) 6502 Kenners 1986 1065 1/0 routines manual page 21

E734

E736
E737

E738
E739

E73A

E73B
E73ZC
E73D

E73E
E73F

E741
E742
E743

E744
E745

ACCTL

ACCMD

TIMDAT
SEC1/20

TOUTF
TREMF

DECI1

DECIZ
DECIZ
LNRL

LNRH
COMF

ESCFLG
STATFG
INVERS

INVERSS
INVST

Copyright (c)

This value is put in the acia cantrol register when
I/0 device # 3 is switched on. (RS232). Default this
value is set to $BA, which means 2 stopbits and 7 data
bits are used. Also the internal baudrate generator is
selected which is set for 2480 baud. After a reset

the default value is put in ACCTL again.

When switching on I/0 device # 3 the contents of this
variable is put into the command register of the acia.
Default this value is set to #@5. Which means no
parity bits are sent or checked, and also the echo
mode is deselected. A transmitter contraol interrupt
will occur and the RTS level is active when low.

Also the IRGE interrupt of the acia is switched on.
Finally bit @ is made 1 to let the acia work.

When the time is printed an the statusline its
contents is ‘:’, with the date its ‘-'.

There is an interrupt running via the timer inside the
VIA. This timer gives an interrupt every 1/20 second.
In this variable the 1/2@ parts aof one second are
counted. This value goes to a maximum of #13, the
minimum is $@@. So this counter can count to 20.

Flag which is normally $FF and is set to $@@ by the
timer when the screen time—-out has passed.

When the transmit register of the acia is empty an
interrupt will occur. Then this flag is made #$@@ thus
enabling the acia output routine to see whether the
transmitter register is empty.

These 3 variables are used for computing from hex to
decimal. The computed decimal number is put as decimal
bytes in these variables.

Fart of decimal number. (See above).

Part of decimal number. (See abave).

Low byte of an 16 bit number which is to be converted
into decimal and then is put on the statusline just
behind Ln:. The screen editor uses this to indicate

in which line of the file the cursor is.

High byte of the above mentioned.

By sending the ascii-value #19 to the screen routine
the screen is cleared from the cursor to the end of
the screen. In this 2 byte variable the address of the
last character on the screen to be erased is located.
This flag is set after an <ESCAPE> is sent to the
screen (£1B).

Internal 1045 flag which indicates there is to be
printed on the statusline.

To get characters in invers video on the screen this
flag has to be set. This is done by sending <ESCAPE>
and i to the screenroutine. The socalled escaperoutine
becoming: #%1B $6%. To switch off invers videa <ESCAPE>
and n, so #1B and $4E, is sent to the screenroutine.
This is the save address for INVERS during saome
raoutines.

Default its contents is #8080 as the statusline is
default switched to invers. Does one want an ardinary
statusline its value has to be changed into #@@. Do
use afterwards the command CLEAR to remake the screen.

6502 Kenners 1986 1065 1I/0 routines manual page 22

E730@
E732
E754
E756
E738
E75A
E73C
E73E
E760
E742
E764
E766
E768
E76A
E74C
E76E

E77@
E771

E772

E773
E774
EE73

At the next addresss are the vectors located which point to the

interrupt routines.
one less then the startaddress of an interrupt routine.
rupt routine must end with an RTS,

Remember that the addresses in this table are
The inter-

not an RTI. The registers which

were put an stack by the main interrupt routine now can be
retrieved by the same program.

INTV1
INTVZ
INTVE
INTV4
INTVS
INTVSE
INTV7
INTVE
INTV?
INTV1O
INTV11
INTVLZ
INTV1ZE
INTV14
INTV1S
INTV16

| N T A T T Y T A A A A |

~ SVAINT
- COoup

- TOUTIL

- TOUTIH
- TOUTL
- TOUTH

Copyright (c)

6502 Kenners 1986

interrupt 1 vector, T1 VIA 1, System clock
interrupt 2 vector, T2 VIA 1

interrupt 3 vector, CBlL VIA 1

interrupt 4 vector, CB2 VIA 1

interrupt 5 vector, SR VIA 1

interrupt & vectot, CAl VIA 1, Keyboard
interrupt 7 vector, CAZ VIA 1

interrupt 8 vector, Ti1 VIA 2

interrupt % vector, T2 VIA 2

interrupt 1@ vector, CB1 VIA 2

interrupt 11 vector, CB2 VIA 2

interrupt 12 vector, SR VIA 2

interrupt 13 vector, CAl VIA 2

interrupt 14 vector, CAZ VIA 2

interrupt 15 vector, ACIA, RE232
interrupt 16 vector, Software break, MON&GS

Accu save address in interrupt routine.

When the keyboard routine is asking for input, then
the cursor is switched on. Which cursor is defined by
a register in the CRTC. The value COUD is put into
the CRTC. If the cursor made is changed then the new
CRTC value is also put in COUD.

1065 is equiped with an automatic screen—off utility.
Which means that if for some time no key has been
depressed the screen autaomaticly will be extinguished.
As soon as a key is depressed again the screen will

be switched on again. For this variable an 16 bits
variable is used. That one is called: TOUTH and TOUTL.
The default value is 180@ seconds. (3@ minutes). Right
after a key is being depressed the default value has
to be put in TOUTH and TOUTL again. This default value
is fetched from TOUTIL and TOUTIH. To be able ta
adjust this time the value is fetched from a variable.
The DOS program DPTIME adjusts these values. Using
this program the screen—off time can be adjusted from
@ to 63535 seconds.

See under TOUTIL.

See under TOUTIL.

See under TOUTIL.

1065 1/0 routines manual page 23

E77&

E778
E774A

E77C
E77E

E77F

E780

E781

E782
E783

E784

E783

E786

WRBEG

WREND
REBEG

REEND
DATUFPD

DAY

MONTH

YEAR

HOURS
MINUTES

SECONDS

DV@4VEC

DV14VEC

Capyright (c)

To be able to use the memory far an autput device,
this pointer has to point to the start of the memory
area to which data has to be transferred. WREND paints
to the end of this area. These values have to be set
befare output device # 5 is initialized. Such can be
accomplisched by writing an auxiliary program ar, by
the monitor and also from the DOS command made using
the command MEMFILL.

See under WRBEG.

To be able to use the memory for an input device,
this pointer has to point to the start of the memary
area from where data has to be read. REEND point to
the end of this area. The values have to be set before
input device # 5 is initialized. Such can be
accomplisched by writing an auxiliary program or, by
the monitor and also from the DOS command mode using
the command MEMFILL.

See under REBEG.

If an interrupt of the timer, used faor the clock,
occurs the relevant registers are adjusted. Only
during the keyboard input routine the time, stated

on the statusline, is adjusted. The date is not copyed
again and again from his registers to the statusline.
This is only done when a day-transition occurs, so at
12 pm. At that moment the flag DATUPD is set tao #FF
and the routine which adjusts the time on the status-
line then knows also the date has changed.

Variable in which the date is saved. This value is
changed at midnight by the interrupt routine. A RESET
does not change this value.

Variable in which the month is kept up to date. This
value is changed by the interrupt routine at midnight
and only after the last day of the month. Months with
3@ or 31 days and leap-years are included in the
routine. After a RESET the value of this variable
remains the same.

Variable in which the year is stored. Is changed only
at midnight 31 december, again; by the interrupt
routine. The value is naot changed after a RESET.

In here the hours of the clock which runs on interrupt
basis are stored. A& RESET does nat change this value.
In here the minutes of the clock which runs on
interrupt basis are stored. After a RESET its

value is not changed.

In here the seconds of the clock which runs on
interrupt basis are stored. A RESET does not change
its value.

Output device # 4 changes its vector after the first
character has been sent. This is done because after
the first character has to be waited for a handshake
signal befare the next character can be sent off.
Without this the output device would be waiting for

a handshake signal before a character has been sent.
To achief uniformity also the input device goes via

a vector.

6502 Kenners 1986 1065 I/0 routines manual page 24

E789

E78B -

E78D
E78F
EZ21
E793
E795
E79D
E7AS
E7AD

E7AF

E7B1

E7B3
E7BS

E7B7

E7EB
E400
ES00

| T A A A O |

DV@&VEC

DV1&VEC

DV@7VEC
DV17VEC
DV@B8VEC
DV18VEC

Output device # & vectaor. To be defined by the user.
If this output device is activated without the vector
has been defined, then the in and autput devices are
put to their default state.

Also see chapter 1 about I/0 devices.

Input device # &6 vector. To be defined by the user.
If this input device is activated without the vector
has been defined, then the in and output devices are
put to their default state.

Also see chapter 1 about I/0 devices.

Output device # 7 vector. See under DV@A&VEC.

Input device # 7 vector. See under DV1&VEC.

OQutput device # 8 vector. See under DV@4&VEC.

Input device # 8 vector. See under DV1&VEC.

ASAVESTACK Software stack far accu contents. 8 bytes.
XSAVESTACK Software stack for X register contents. 8 bytes.
YSAVESTACK Software stack for Y register contents. 8 bytes.

START

UNRINT

NMIVECTOR

BRKVECTOR
IRGVECTOR

KEYFNT

KEYRUF
SYSB
TSLE

Pointer which keeps track of the start of the video-—
ram an the screen. The video ram is located from $EB00
to #$EFFF. However the upper-left-position on the
screen (1,1) can only be found at address $E80Q after
an reset. After a scroll-up this is $EBBB + #5080 =
$E830@ already.

When an interrupt is generated which is not recognized
the interrupt routine jumps via this vector to the
error—repart ‘interrupt ignored’. So if one writes

an program oneself, in which a interrupt is generated
in a pheripheral or a timer then this vector can be
derauted via a selfmade interrupt routine which checks
whether the interrupt came fraom such device. If not,
still the jump to the error-report ‘interrupt ignored’
has to be made.

The systemvector NMI at address #FFFA point via an
indirect jump in the jumptable to this address. The
NMI vector points to a dummy RTI.

When a break is detected by DOS4S then the routine is
started to which BRKVECTOR points.

The system vector IRG at #FFFE points via an indirect
jump 1in the jumptable to this address. So, does an IRQ@
occur and has the interrupt flag in the processor not
been set then the interrupt routine is started to
which IRGVECTOR points.

The keyboard works with interrups. Which means that
when a key is depressed its value is stored in the
keyboard buffer. After each key-input the variable
KEYFNT is incremented by one. When the inputroutine
now asks far a key then the first character fram the
buffer is taken, KEYFNT is decremented and the buffer
cantents moves one place.

The keyboard input buffer, which can contain 408
characters, uses these addresses.

The DOS&45 bootstrap needs 2 buffers of 256 bytes. This
buffer is used for ‘system block’.

The second buffer is used for “tsl block’.

Copyright (c) 4582 Kenners 1986 I0&6S 1/0 routines manual page 25

EQQ20
E@@1l
E@0Z
EQ@3

E@24
EQQ4
EQAS
E@Q&
EBB7

E1008
E1@1
E102
E103
E104
E1@5
E106
E107
E108
E1@9
E1Q@A
E1@EB
E10C
EL1@D
E1BE
E1@F

E110
Ei11
ELLZ
E113
E114
E115
El11é
E117
E118
E119
EillA
E11B
E11C
E11D
ELlLE
E11F

E130
E1Z0@
E131
E132
E133

E140
E141

T Y T T T T T T O T A AN |

PAD
PAC
FBD
PBC

CMR
STR
TKER
SCR
DTR

VAPRD
VAPAD
VAFPBDD
VAPADD
VATACL
VATACH
VATALL
VATALH
VATBCH
VATBCH
VASR
VAACR
VAFCR
VAIFR
VAIER
VAADN

VEBPBD
VBFAD
VBPBDD
VBFPADD
VBTACL
VBTACH
VBTALL
VBTALH
VBTBCH
VBTRCH
VBSR
VBACR
VBFCR
VBIFR
VBIER
VBADN

RECREG
TRAREG
ACIASR
ACICMD
ACICTL

CRTCAR
CRTCRF

Copyright (c)

4502 Kenners 1986

Data and data direction A.
Cammand register.
Data and data direction B.
Caommand register.

Command register.
Status register.
Track register.
Sector register.
Data register.

Port B data.

Port A data.

FPort B data direction.

FPort A data direction.

Ti, latch low, counter low.
Ti, counter high.

T1l, latch low.

Ti, latch high.

T2, latch low, counter low.
T2, counter high.

Shift register.

Auxiliary cantrol register.
Peripheral control register.
Interrupt flag register.
Interrupt enable register.
Part A data, no handshake.

Part B data.

Port A data.

Fort B data direction.

Faort A data direction.

Ti, latch low, counter low.
T1l, counter high.

T1i, latch low.

T1l, latch high.

T2, latch low, counter low.
T2, counter high.

Shift register.

Auxiliary control register.
Feripheral control register.
Interrupt flag register.
Interrupt enable register.
Port A data, no handshake.

Receiver register.
Transmitter register.
Status register.
Command register.
Control register.

Address register.
Register file.

10465 1/0 routines manual

FPIA on FDC print.

FDC on FDC print.

VIA 1 on the CFU
extention print.

via 2 on the CPU
extention print.

ACIA on the CFU

CRTC on the VDU-
print.

page 26

